II B. TECH I SEMESTER REGULAR EXAMINATIONS, FEB-2022 MATHEMATICS - III (Common to ALL BRANCHES)

Time: 3 Hours

Max. Marks: 70
Note : Answer ONE question from each unit ($\mathbf{5 \times 1 4 = 7 0}$ Marks)

UNIT-I

1. a) Find non-singular matrices P and Q such that $P A Q$ is in the
normal form of A for the matrix, $A=\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & 1 \\ 3 & 1 & 1\end{array}\right]$
b) Find Eigen values and Eigen vectors of following matrix $\left[\begin{array}{ccc}3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3\end{array}\right]$.
(OR)
2. a) Check the consistency of following system of equations
$x+2 y+2 z=5 ; 2 x+y+3 z=6 ;$
$3 x-y+2 z=4 ; x+y+z=-1$. If consistent solve them.
b) Verify that the eigen values of A^{2} and A^{-1} are respectively the squares and reciprocals of the eigenvalues of A, given that $A=\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$

UNIT-II

3. Verify Cayley-Hamilton theorem for the matrix
$A=\left[\begin{array}{ccc}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3\end{array}\right]$ also determine A^{-1} and A^{4}.
(OR)
4. Reduce the quadratic form $6 x^{2}+3 y^{2}+3 z^{2}-4 x y-2 y z+4 z x$ to the sum of squares form and find the corresponding orthogonal transformation. Also indicate the nature, index and signature of the quadratic form.
5. a) Determine the constants a and b such that the curl of [7M] $(2 x y+3 y z) \bar{i}+\left(x^{2}+a x z-4 z^{2}\right) \bar{j}+(3 x y+2 b y z) \bar{k}$ is zero.
b)

Prove that $\nabla^{2}\left[\nabla \cdot\left(\frac{\bar{r}}{r^{2}}\right)\right]=2 r^{-4}$, where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$.
(OR)
6. a) Find the directional derivative of $\phi=x^{2}-y^{2}+2 z^{2}$ at the point $P(1,2,3)$ in the direction of the line $P Q$, where Q is the point $(5,0,4)$ In what direction it will be maximum?. Find the maximum value of it.
b) Prove that $\operatorname{curl}[(\bar{r} \times \bar{a}) \times \bar{b}]=\bar{b} \times \bar{a}$, where \bar{a} and \bar{b} are constants.

> UNIT-IV
7. a) Evaluate $\iiint_{V} \bar{F} d V$ where $\bar{F}=x \bar{i}+y \bar{j}+2 z \bar{k}$ and V is the volume enclosed by the planes $x=0, x=b, y=0, y=a, z=b^{2}$ and the surface $z=x^{2}$.
b) Evaluate $\iint_{S} \bar{F} \cdot \bar{n} d s$ using Gauss divergence theorem where
$\bar{F}=2 x y \bar{i}+y z^{2} \bar{j}+z x \bar{k}$ and S is the surface of the region bounded by $x=0, y=0, z=0, y=3, x+2 z=6$.
(OR)
8. a) Evaluate $\int_{C} \bar{F} \cdot d \bar{r}$ along the curve $x^{2}+y^{2}=1, z=1$ in the positive direction from $(0,1,1)$ to $(1,0,1)$, where $\bar{F}=(y z+2 x) \bar{i}+x z \bar{j}+(x y+2 z) \bar{k}$.
b) By Green's theorem find the area of the region for $\frac{1}{2} \int_{c} x d y-y d x$ bounded by the parabola $y=x^{2}$ and the line $y=x+2$.

UNIT-V
9. a) Find the solution of $\left(D^{2}+2 D D^{\prime}+D^{\prime 2}-2 D-2 D^{\prime}\right) z=\sin (x+2 y)$
b) Solve $9\left(p^{2} z+q^{2}\right)=4$
(OR)
10. a) Find the general solution of $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$
b) Solve $\frac{\partial^{3} z}{\partial x^{3}}-2 \frac{\partial^{3} z}{\partial x^{2} \partial y}=e^{x+2 y}+4 \sin (x+y)$

