II B. TECH I SEMESTER REGULAR EXAMINATIONS, FEB-2022 MATHEMATICS - III (Common to ALL BRANCHES)

Time: 3 Hours

Max. Marks: 70

Note : Answer ONE question from each unit $(5 \times 14 = 70 \text{ Marks})$

UNIT-I

- 1. a) Find non-singular matrices *P* and *Q* such that *PAQ* is in the [7M] normal form of *A* for the matrix, $A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$
 - b) Find Eigen values and Eigen vectors of following matrix [7M] $\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$.

(OR)

- 2. a) Check the consistency of following system of equations [7M] x + 2y + 2z = 5; 2x + y + 3z = 6; 3x - y + 2z = 4; x + y + z = -1. If consistent solve them.
 - b) Verify that the eigen values of A^2 and A^{-1} are respectively the [7M] squares and reciprocals of the eigenvalues of A, given that
 - $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$

UNIT-II

3. Verify Cayley-Hamilton theorem for the matrix [14M] $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ also determine A^{-1} and A^{4} .

(OR)

4. Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 - 4xy - 2yz + 4zx$ to [14M] the sum of squares form and find the corresponding orthogonal transformation. Also indicate the nature, index and signature of the quadratic form.

R20

UNIT-III

5. a) Determine the constants *a* and *b* such that the curl of [7M] $(2xy+3yz)\overline{i}+(x^2+axz-4z^2)\overline{j}+(3xy+2byz)\overline{k}$ is zero.

b) Prove that
$$\nabla^2 \left[\nabla \cdot \left(\frac{\bar{r}}{r^2} \right) \right] = 2r^{-4}$$
, where $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$. [7M]

(OR)

- 6. a) Find the directional derivative of φ = x² y² + 2z² at the point [7M] P(1, 2, 3) in the direction of the line PQ, where Q is the point (5, 0, 4) In what direction it will be maximum?. Find the maximum value of it.
 - b) Prove that $curl\left[\left(\bar{r}\times\bar{a}\right)\times\bar{b}\right]=\bar{b}\times\bar{a}$, where \bar{a} and \bar{b} are constants. [7M]

UNIT-IV

- 7. a) Evaluate $\iiint_V \overline{F} \, dV$ where $\overline{F} = x\overline{i} + y\overline{j} + 2z\overline{k}$ and V is the volume [7M] enclosed by the planes x = 0, x = b, y = 0, y = a, $z = b^2$ and the surface $z = x^2$.
 - b) Evaluate $\iint_{s} \overline{F \cdot n} \, ds$ using Gauss divergence theorem where [7M] $\overline{F} = 2xy\overline{i} + yz^{2}\overline{j} + zx\overline{k}$ and S is the surface of the region bounded by x = 0, y = 0, z = 0, y = 3, x + 2z = 6.(OR)
- 8. a) Evaluate $\int_{C} \overline{F} d\overline{r}$ along the curve $x^2 + y^2 = 1$, z = 1 in the positive [7M] direction from (0, 1, 1) to (1, 0, 1), where $\overline{F} = (yz + 2x)\overline{i} + xz\overline{j} + (xy + 2z)\overline{k}$.

b) By Green's theorem find the area of the region for $\frac{1}{2}\int_{c}^{x} xdy - ydx$ [7M] bounded by the parabola $y = x^{2}$ and the line y = x + 2. UNIT-V

9. a) Find the solution of
$$(D^2 + 2DD' + D'^2 - 2D - 2D')z = \sin(x+2y)$$
 [7M]

b) Solve $9(p^2z+q^2)=4$ [7M]

(OR)

10. a) Find the general solution of
$$x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$$
 [7M]

b) Solve
$$\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = e^{x+2y} + 4\sin(x+y)$$
 [7M]

* * * * * Page **2** of **2**